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Performance Comparison of Selected
Bandwidth-Efficient Coded
Modulations

K. Andrews,! D. Lee,! F. Pollara,! and M. Srinivasan!

Bandwidth-efficient modulations may be used to reduce the possibility of fu-
ture congestion in the deep-space frequency bands due to a growing demand for
higher data rates and to an increasing number of simultaneous missions. High-rate
error-correcting codes such as punctured turbo codes and low-density parity-check
(LDPC) codes can improve bandwidth usage while still providing large coding gains
essential for deep-space communications. This article examines the throughput and
bit-error rate performance of various coding and modulation combinations. As the
number of such combinations is unlimited, the study concentrates upon bandwidth-
efficient quadrature modulations compatible with the DSN Block V Receiver and
selected turbo and LDPC codes. Capacity limits are derived for modulations under
bandwidth constraints, and a comparison of selected uncoded and coded modula-
tion schemes on the basis of bandwidth-normalized throughput and bit-error rate
performance, obtained via theory and/or simulation, is presented. The effect of non-
linear amplifier operation is also analyzed. Finally, candidates for high-data-rate
Mars missions are identified.

l. Introduction

Communication links for deep-space missions have traditionally been severely power limited and es-
sentially unaffected by bandwidth limitations (see Fig. 1, which illustrates how little can be gained with
higher than binary modulations if power efficiency is paramount). This situation is rapidly changing with
the advent of new technology developments such as very large antenna arrays on the ground, inflatable
antennas on the spacecraft, and much higher power availability through radioisotope thermoelectric gen-
erators (RT'Gs). Even current mission designs such as Mars Reconnaissance Orbiter (MRO) stretch the
bandwidth availability at 8.4 GHz (X-band) and are forced to use more bandwidth-efficient modulations
or move to higher frequencies, 32 GHz (Ka-band). Future missions adopting the technologies just men-
tioned will be forced to use bandwidth-efficient modulations even at Ka-band due to much higher data
rates and many simultaneous users.
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Fig. 1. Capacity of the additive white Gaussian noise
channel with unconstrained and binary-input signaling.

The objective of this article is to start a systematic comparison of currently proposed coding and
modulation schemes in terms of their power and spectral efficiency and of other suitable characteristics for
deployment in future missions and to isolate a few recommended schemes. Besides relying on compliance
with prescribed spectral masks [14], it is necessary to define appropriate metrics for performance in order
to make meaningful comparisons and perform trade-off analyses. While power efficiency can be easily
summarized by the single parameter E}, /Ny, representing the signal-to-noise ratio (SNR) per transmitted
bit of information, the measure of spectral efficiency is open to several possibilities, as follows:

(1) Half-power bandwidth—The bandwidth such that the power spectrum of the signal is within
3 dB of its peak value (inside the main lobe).

(2) Null-to-null bandwidth—The width of the main spectral lobe.
(3) Equivalent noise bandwidth—Defined as

S IS(Pdf
M maxy |S(F))?

where S(f) is the power spectral density (PSD). This describes a rectangle of base B,
and height maxs |S(f)|? having an area equal to the total signal power.

(4) Fractional power containment bandwidth—Defined as the bandwidth that contains a given
percentage of the signal power (also called essential bandwidth in [14]).

These measures of spectral efficiency are illustrated in Fig. 2. In this article, we will base our com-
parisons on the last of these definitions (fractional power containment bandwidth) in accordance with
the specifications in [14]. Our comparisons will be guided by the investigation of the ultimate capacity
limits in the presence of bandwidth limitations, which is presented along with a discussion of Nyquist
signaling in the next section. We then give an overview of selected coding and modulation schemes that
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Fig. 2. Some of the possible measures for spectral efficiency: (a) half-power
bandwidth, (b) null-to-null bandwidth, (c) equivalent noise bandwidth, and
(d) fractional power containment bandwidth.

have been the subjects of investigation over the past several years and compare their performances in
terms of bandwidth and power efficiency. As some of the candidate modulation schemes are not constant
envelope, they undergo distortion when subjected to the high-efficiency but nonlinear region of power
amplification. This issue is investigated by showing performance results from simulations of nonlinear
amplification, as well as via a parametric study in which the peak-to-average power of each modulation is
calculated along with estimates of losses due to constraining operation within the lower-efficiency, lower-
power linear amplification region. Finally, conclusions regarding promising candidates among the coded
modulation schemes for future high-data-rate missions are presented.

Il. Signaling Scheme and Capacity Consideration

A Dbinary phase-shift keying (BPSK) transmitter sends a sequence of binary symbols,
{--+,b_1,bo,b1, -}, where b; € {+1,—1} are independent identically distributed (i.i.d.) and zero mean,
by modulating a carrier with the signal s(¢) obtained by convolving the impulse stream

b(t) = i bid(t — iT)

1=—00

with the impulse response r(t) of the transmission filter, resulting in x(¢) = b(t) * r(¢). The random
process z(t) has PSD S(f) = (1/T)|R(f)|?, where R(f) is the Fourier transform of r(t) and T is the
signaling interval. If r(¢) is the unit rectangle (i.e., r(t) = 1 for 0 < ¢t < T and is zero elsewhere), the
resulting BPSK modulation is called nonreturn to zero (NRZ).

The matched-filter receiver convolves this signal, plus added Gaussian noise, with a filter of impulse
response 7*(—t) and samples the result at times ¢ = i7" (where the asterisk represents the complex
conjugate). Note that if the receiver filter is the unit rectangle with impulse response equal to 1 for
0 <t < T and zero elsewhere, then this is the “integrate-and-dump” receiver. The impulse response of
the combined transmitter and matched-filter receiver system (with no noise) is s(t) = r(t) x r*(—t), with
corresponding transfer function S(f) = (1/7)|R(f)|*.



If s(t) is a Nyquist pulse, i.e., s(0) = 1 and s(¢T) = 0 for integer i # 0, then there is no inter-symbol
interference (ISI). Moreover, if s(t) is Nyquist, then the noise samples are independent [12, Theorem 3.1.5,
p. 87]. The ith received noise sample is the result of filtering the additive white Gaussian noise (AWGN)
process with r*(t—4T"), and these filters are orthogonal because [ r(t—iT) r*(t—i'T)dt = s ((i —i')T) =0
when i # 7.

These arguments show that when an AWGN channel is surrounded by a BPSK transmitter with filter
r(t) and a matched-filter receiver, for which r(¢) x r*(—t) is Nyquist, it is converted into a discrete-
time Gaussian channel without ISI. This channel has noise with variance NoT/2 per transmission, and
transmissions are made every T seconds.

A. Properties of Signaling Pulses

Some relevant properties of Nyquist functions s(¢) are discussed. Define the comb function:

c(t)= Y o(t—1i)

i=—00

Its Fourier transform is also a comb function: C(f) = ¢(f). When s(¢) is Nyquist, s(t/T)c(t/T) = 6(t/T),
so taking Fourier transforms, S(fT) x C(fT) = T. This can only be true if S(f) has support at least of
length 1/T. The Nyquist function S(f) with minimum support is the unit rectangle of width 1/7, which
R(f) is as well, and r(¢) is a sinc function.

Symmetric Nyquist functions with support up to 2/T also have simple transforms. It is easy to show
they have point symmetry about (1/7,1/2), i.e., S(f) =1—-S1/T — f) for 0 < f < 2/T. This family of
functions includes the unit rectangle just considered, the raised-cosine functions, and trapezoids, among
others. All of these have a —3 dB bandwidth of exactly 1/7.

The time domain “tails” of r(¢) decrease as |t|~("*1) where n is the number of the first discontinuous
derivative of R(f). The unit rectangle is discontinuous (in the Oth derivative), so the tails decay as 1/t.
The trapezoids are discontinuous in the first derivative, and the tails decay as 1/t2. The raised-cosine
solutions (for o # 0) are discontinuous in the third derivative, so the tails decay as 1/t*, and for this
reason they have attracted particular attention.

B. Model for Coded Modulation Systems

When the communication system uses both a suitable modulation to obtain the desired bandwidth
efficiency and a coding scheme to obtain power efficiency, we can model it as in Fig. 3. In the figure,
Ty, = 1/Ry is the information bit time and Ry is the bit rate, Ty = RTy is the coded symbol time and R
is the code rate, and T' = T, log, M is the baud time corresponding to the signaling interval discussed
above. Here M is the cardinality of the signal constellation: M = 2 for BPSK, M = 4 for quadrature
phase-shift keying (QPSK), etc. The signal b(t) corresponds to the symbols entering the modulator, and
the signal s(t) corresponds to bauds.

Tp Ts T
—»| ENCODER »| MODULATOR
AWGN
bit symbol baud CHANNEL

Fig. 3. Model for coded modulation systems.



C. Discrete-Time and Continuous-Time Capacity

The capacity of a discrete-time Gaussian channel is

C= %bg? <1 + %) bits/symbol (1)
where P and NN are the powers of the signal and noise, respectively. To extend this result to the continuous-
time band-limited Gaussian channel, let us suppose that the signal and noise are band-limited to the
interval [—B, B]. By the sampling theorem, we can represent each signal using at least 2B samples per
second, each with average power P. Considering an AWGN with two-sided power spectral density N, /2
sampled every 1/2B seconds, the noise has power N,B and we get the capacity C of the band-limited
Gaussian channel as

C = Blog, (1 + ) bits/second (2)

P
NoB
This capacity is shown in Fig. 4 for one-dimensional and two-dimensional (unconstrained-input) signaling.

Results on capacity loss due to filtering, shown in Fig. 4, are discussed in Subsection I1.D.

Using the dimensionless quantities p = P/(NoB) as the signal-to-noise ratio and n = C/B as the
bandwidth efficiency in bits/second /hertz, we can rewrite Eq. (2) as

1 = log,(1 + p) bits/second/hertz

Conversely, the continuous-time AWGN channel can be made discrete (with transmissions every T =
1/B seconds) by using a unit rectangle Nyquist filter of width B. It is straightforward to show that this
system achieves the capacity of the band-limited AWGN channel.
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Fig. 4. Effect of filtering on unconstrained and binary-input capacity.



When constrained to binary inputs, the continuous-time AWGN channel with transmission filter r(t)
suffers no loss in capacity, compared to the same system under a mazimum power constraint. This is
because r(t) must be low-pass at some point, and the binary input signal can be switched fast enough to
approximate any analog level to the desired precision [13].

The discrete-time AWGN channel, constrained to binary inputs, does have a lower capacity than when
the input has only a mean- or maximum-power constraint. With binary inputs, it transmits H(Y)—H (N)
bits of information, where H(-) is the entropy function, and N, X, and Y are random variables with
distributions N ~ N(0, Ny/2), X equally distributed between ++/P and —v/P, and Y = X + N. This is
readily computed, is a function of p = P/(NoB), and has limit

lim H(Y) — H(N) = 1 bit/transmission

p—00

The binary input capacity is also plotted in Fig. 4 for one- and two-dimensional signaling.

D. Capacity with Bandwidth Constraints

Given an AWGN channel with input bandwidth limit B, the capacity in Eq. (2) is achieved by using
Gaussian inputs with a uniform PSD:

P B
5p = fl <

S(f; fo) = 2B 2
0, otherwise

Because this PSD is symmetric, i.e., S(f; fo) = S*(—f; fo), we can simplify the notation by using the
complex baseband representation:

S(f + fo; fo) if f>—fo

0 otherwise

Note that [*_S(f) =1/2 [ S(f; fo)-

When the channel input is constrained to power spectral density S(f), its capacity is

0:%/_(:1% [1—#25]1\55)}# (3)

With a constant-envelope constraint but no bandwidth constraint, capacity is not reduced. Any set
of orthogonal signals, such as the sinusoids or the binary Hadamard vectors, achieves capacity [20].
With a constant-envelope constraint and a PSD constraint, capacity is reduced, although the general
solution to this problem remains open [21]. With a constant-envelope constraint, a PSD constraint,
and a limit on the transition rate (or transition density), the capacity is reduced further, but this
also is an open problem in general [22]. In Fig. 4, we show the capacity loss as calculated from
Eq. (3) due to a specific class of filters called square-root raised-cosine filters, which are described in
detail in Section IV. The effect of imposing a spectral mask upon a telemetry signal has been investi-
gated [18].2 In [18], it was shown that certain spectral masks do not allow the use of Nyquist signaling

2 B. Moision, “Capacity Under a Spectral Mask Constraint,” JPL Interoffice Memorandum (internal document), Jet Propul-
sion Laboratory, Pasadena, California, October 23, 2002.



(for example, the original high-rate Space Frequency Coordination Group (SFCG) 17-2R1 recommenda-
tion [14]). Furthermore, it has been argued that all of the proposed SFCG mask definitions do not allow
for a meaningful evaluation of resultant capacity, and an alternate mask definition has been proposed
along with corresponding capacity calculations.?

lll. Coding Systems

We have considered several coding systems suitable for combination with bandwidth-efficient modula-
tions for deep-space missions. These codes are shown in Figs. 5 and 6 together with codes currently in use
in the DSN and with codes recently published in the literature. An essential requirement for bandwidth
efficiency is to keep the code rate high enough, say > 0.5, but not too high, say < 0.8, to preserve sufficient
coding gain and optimality with respect to the unconstrained capacity limit.

One standard code used in the DSN whose performance is well characterized and included in our
comparison is the rate 1/2, constraint length 7 convolutional inner code concatenated with the (255,223)
Reed—Solomon outer code (RS+(7,1/2) c.c). In addition, we have isolated as preferred candidates two
new classes of codes:

(1) Punctured turbo codes of rate 3/4 and 7/8, which are a simple extension of the present
Consultative Committee on Space Standards (CCSDS) standard turbo codes. Details on
these codes and the specific punctured pattern have been submitted to CCSDS for inclusion
in a revised standard for coded telemetry.

(2) Low-density parity-check (LDPC) codes of rate 0.5 and 0.8 [15], as shown in Fig. 5. Figure 5
shows a variety of codes with near-capacity performance. Rates below 0.5 are suitable for
low-data-rate deep-space missions; rates between 0.5 and approximately 0.8 are suitable
for high-data-rate deep-space missions when used with offset QPSK (OQPSK) modulation.
Code rates higher than 0.8 are not recommended for deep-space missions due to severe
power efficiency reduction.
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Fig. 5. Codes performance for BER = 1075.

3 Ibid.
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The punctured turbo codes have the advantage of being decodable with a simple modification of the
current DSN turbo decoder. The LDPC codes have two main advantages: they have lower decoding
complexity and therefore are suitable for very high data rates (>10 Mb/s), and they perform better at a
very low bit-error rate (BER) (107?) since their error floor can be controlled and pushed to lower BERs
for a small penalty in their waterfall-region performance. For application requiring BERs lower than the
traditional 107¢ and high data rates, LDPC codes are a suitable choice (see Fig. 6). Higher spectral
efficiency is obtained by using these codes with OQPSK modulation.

IV. Modulations

The bandwidth-efficient modulations considered in this article are for the most part quadrature mod-
ulations that are compatible with the DSN Block V Receiver structure and have been recommended by
the CCSDS. One exception to this is the four-dimensional (4D) 8-phase shift keying (8-PSK) trellis-coded
modulation (TCM), which is being used by the European Space Agency and has been proposed for use
in the Earth Exploration Satellite Service. While “modulation” in the strict sense refers to the shape of
the signal constellation (M-ary phase-shift keying (M-PSK), quadrature amplitude modulation (QAM),
etc.), some of the modulations discussed here actually denote specific pulse shapes:

(1) BPSK: This modulation has been used traditionally in deep-space missions with ++/P-
level rectangular-shaped baseband pulses. In our work, the use of square-root raised-cosine
(SRRC) pulses, which are Nyquist pulses, has been investigated. As shown in Fig. 7, the
power spectral density of the SRRC pulse is given by
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where T' = Ty - log, M and M is the constellation size (e.g., M = 2 for BPSK, M = 4 for
QPSK), with roll-off factor 0 < o < 1. This modulation has bandwidth B = (1 + «)/T
and power [~ S(f)df = P.

The time-domain pulse shapes are given by [16]:
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They usually are generated using a look-up table over several symbols and satisfy the
Nyquist condition for zero intersymbol interference (ISI), so that the bit-error probability
is identical to that of BPSK with NRZ rectangular pulses if the receiver samples at zero-ISI
points.

(2) OQPSK: In offset QPSK, the in-phase and quadrature symbols are delayed by half of the
pulse duration so that phase changes are limited to 90 deg at any time. Both rectangular
and SRRC pulse shaping are considered with OQPSK. Note that when pulse shaping is
applied, the peak-to-average power ratio is different for BPSK and OQPSK, due to the
phase constraint placed upon the OQPSK symbols.

(3) Pre-Coded GMSK: GMSK is minimum-shift keying with data filtered by a Gaussian-
shaped frequency response filter, here with BT values of 0.25 or 0.5, producing partial-
response signals. In the version of GMSK presented here, the data are pre-coded with a
differential decoder in order to compensate for the inherent differential encoding in MSK-
type modulations and are implemented in simulations as a frequency modulation.

(4) T-OQPSK: Trellis-coded OQPSK is an alternative implementation of staggered quadrature
overlapped raised-cosine modulation in which memory is introduced in transmitted data
via a rate 1/2 two-state encoder [9]. The optimal receiver for uncoded T-OQPSK consists
of four matched filters followed by a Viterbi algorithm. A constant-envelope version of
T-OQPSK has been obtained by passing the signal through a bandpass hard-limiter,*
introducing cross-correlation between in-phase and quadrature channels.

(5) FQPSK: In Feher-patented QPSK, cross-correlation is introduced between in-phase and
quadrature data streams and specific waveforms are used so that the envelope is nearly
constant. A filtered version referred to as FQPSK-B uses patented filters in in-phase
and quadrature channels following waveform generation, resulting in improved bandwidth
efficiency at the expense of envelope constancy. See [8].

4M. K. Simon, D. Divsalar, and D. Lee, “Coded Constant Envelope T-OQPSK with Iterative Decoding,” (internal docu-
ment), Jet Propulsion Laboratory, Pasadena, California, October 23, 2001.



Fig. 7. Raised cosine spectrum.

V. Comparison of Coded Modulation Systems

We considered several combinations of coding and modulation schemes described in Sections IIT and IV.
Figure 8 compares power efficiency, Ey/Ny, and spectral efficiency, 7 = R,/ B, measured as the fractional
(99 percent) power containment bandwidth in bits/second/hertz, defined in Section I, for some of these
combinations of coding and modulations on the AWGN channel. Capacity curves also are shown in the
figure. When a finite error rate is acceptable, the channel capacity is higher; for typical numbers such as
BER=10"9, the difference is imperceptible. Because this capacity is achieved by using a uniform PSD,
the curve can be raised by the fraction 1/3 when measured according to a 100 x 8 percent bandwidth
constraint. Some of the included data points come from evaluation of analytical expressions, while other
points were obtained through computer simulations. For systems employing independent coding and
modulation, the spectral efficiency may be obtained by scaling the uncoded spectral efficiency by the
code rate, and applying coding gains for various codes to required uncoded Ej,/Ny values for 1076 bit-
error rate performance. Combined coding and modulation (in which intersymbol interference from the
modulation is used as an inner code of a serial concatenated pair) requires direct simulation. Figure 8
also shows the the region of interest for Mars missions, where coding gain is still of great importance,
and moderate spectral efficiency is necessary to accommodate current high-data-rate X-band missions
and future Ka-band missions requiring even higher data rates.

Table 1 further illustrates the same comparison of uncoded and coded modulation formats that have
been studied. These modulations are compared in terms of several parameters, including throughput,
bit-error rate performance, SFCG mask conformity, and effect of power amplification. Much of this
information is obtained from [1-3], and further details regarding these results may be pursued therein.
Other relevant evaluation criteria that were not included here are robustness to synchronization errors
and receiver complexity. The table parameters that were evaluated here are explained as follows:

(1) Spectral efficiency: This is the ideal normalized throughput, i.e., the number of transmitted
bits per second normalized by the 90 percent or 99 percent power containment bandwidth,
in the absence of distorting factors such as nonlinear amplification. The bandwidths are
obtained analytically or through spectra generated by software simulations such as Matlab
and Signal Processing Workstation (SPW).

(2) Ey/Ny at a 107° bit error rate: The required bit SNR to achieve 107° bit-error proba-
bility is obtained from theoretical formulas when available. In other cases, Monte-Carlo
simulation results are given. Annotations to the table indicate when suboptimal receiver
results are used.

(3) SFCG mask conformity: The SFCG has recommended a mask restricting the PSD of a
telemetry signal relative to the peak of its spectrum. In the table, we refer to the mask
specified by provisional Recommendation 21-4, shown in Fig. 9.
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Fig. 8. Comparison of several coded modulation schemes showing the region of interest
for Mars missions.

Peak-to-average power ratio: The peak-to-average power ratio is given in dB. For full
response signals, the peak and average powers may be obtained analytically. For partial
response signals such as SRRC and GMSK, the peak and average powers are calculated
from a simulated symbol stream that is thousands of symbols long.

Saturated power amplifier nonlinearity: A 10-W European Space Agency (ESA) solid-
state power amplifier (SSPA) was simulated using SPW via amplitude nonlinearity (AM-
AM) and phase nonlinearity (AM-PM) data provided by ESA. In the simulations, the
SSPA was driven at maximum output power in all cases (no back off), and resulting
power spectra and bit-error probabilities were then calculated. For many of the coded
schemes, the throughput was obtained by scaling the throughput for the corresponding
uncoded modulations, while the required bit SNR for the nonlinear amplifier case was
obtained by applying the same coding gain as in the linear case. Note that this method
is an approximation and may underestimate the coded performance. For example, the
coding gain for SRRC-OQPSK a = 0.5 with the RS+(7,1/2) concatenated code is 7.9 dB.
Applying this coding gain to the nonlinear channel gives us a required SNR of 3.7 dB, while
an actual SPW simulation yielded a required SNR of 2.8 dB. Unfortunately, a complete
set of simulations using the SSPA for all the coded modulation schemes was not available.
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Table 1. Comparison of bandwidth-efficient modulations.

Spectral Ideal Peak-to- Saturated power
efficiency, Ey,/No SFCG average amplifier nonlinearity
Modulation (bits/s)/Hz at 1076 mask power
and code BER, conformity ratio, Spectral Ey/No
90%  99% dB dB efficiency at 1076,
BW  BW at 99% BW dB
Uncoded BPSK
NRZ rectangular 0.59  0.047 10.5 No 0.0 0.047 10.5
SRRC-BPSK
a=1 0.84 0.61 10.5 Yes 3.7 0.38 10.82
a=0.5 1.02 0.79 10.5 Yes 3.4 0.35 11.12
a=0 1.11 1.01 10.5 Yes 8.2 0.31 15.82
OQPSKP
NRZ rectangular 1.18  0.094 10.5 No 0.0 0.094 10.5
SRRC-OQPSK
a=1 1.68 1.22 10.5 Yes 2.1 1.15 10.8P
a=0.5 2.04 1.58 10.5 Yes 3.1 1.19 11.6°
a=0 2.22 2.02 10.5 Yes 6.0 1.11 >24P
Pre-coded GMSK
BT =0.5 145  0.97 10.6¢ Yes 0.0 0.97 10.6¢
BT =0.25 1.79 1.16 10.9d/11.2C Yes 0.0 1.16 10.9“1/11.2C
FQPSK
Unfiltered 1.96 1.28 11.3d/11.7C Yes 0.02 1.28 11.8¢
B (filtered)® 1.96 1.32 11.9¢ Yes 0.5 1.28 11.44/12.1¢
Coded RS+(7,1/2)
convolutional
code (c.c.)
BPSKf
NRZ rectangular 0.26  0.021 2.6 No 0.0 0.021 2.6
SRRC-BPSK
a=1 0.37  0.27 2.6 Yes 3.7 0.172 2.98
a=0.5 0.45 0.35 2.6 Yes 34 0.158 3.20
a=20 0.49 044 2.6 Yes 8.2 0.14#& 7.9h
RS+(7,1/2) c.c.
QPSKf
NRZ rectangular 0.52  0.04 2.6 No 0.0 0.04 2.6
SRRC-OQPSK
a=1 0.73  0.53 2.6 Yes 2.1 0.58 2.9h
a=0.5 0.89  0.69 2.6 Yes 3.1 0.51#& 2.8
a=20 0.97 0.88 2.6 Yes 6.0 0.498 >16.10
T-OQPSK with 0.95 0.62 2.7 Yes 1.3 0.54] 2.8¢
RS+(7,1/2) c.c.f+i
Constant envelope 0.95 0.62 3.0 Yes 0.0 0.62 3.0

T-OQPSK with
rate 1/2, 4-state c.c.X
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Table 1. Cont’d.

Spectral Ideal Peak-to- Saturated power
efficiency, Ey,/No SFCG average amplifier nonlinearity
Modulation (bits/s)/Hz at 1076 mask power
and code BER, conformity ratio, Spectral Ey/No
90%  99% dB dB efficiency at 1076,
BW BW at 99% BW dB
Coded  Unfiltered FQPSK with
outer c.c.!
Rate 1/2, 4-state 0.98 0.64 2.4 Yes 0.02 0.64 2.5
Rate 3/4, 8-state 1.47 0.96 3.4 Yes 0.02 0.96 3.5
16416 turbo-coded
OQPSK (8920)
Rate 1/2 NRZ rectangular ~ 0.59  0.047 1.1 No 0.0 0.047 1.1
Rate 1/2 SRRC-OQPSK
a=1 0.84 0.61 1.1 Yes 2.1 0.588 1.40
a=0.5 1.02  0.79 1.1 Yes 3.1 0.68 2.2h
a=0 111 1.01 1.1 Yes 6.0 0.56¢ >14.6%
16+16 turbo-coded
OQPSK (8920)
Rate 3/4 NRZ rectangular  0.89 0.07 2.4 No 0.0 0.07 2.4
Rate 3/4 SRRC-OQPSK
a=1 1.26 0.92 2.4 Yes 2.1 0.86% 2.7k
a=20.5 1.53 1.19 2.4 Yes 3.1 0.898 3.5
a=0 1.67  1.52 2.4 Yes 6.0 0.838 >15.90
16+16 turbo-coded
OQPSK (8920)
Rate 7/8 NRZ rectangular ~ 1.03 0.08 3.7 No 0.0 0.08 3.7
Rate 7/8 SRRC-OQPSK
a=1 1.47 1.06 3.7 Yes 2.1 1.018 4.0
a=05 1.79 1.38 3.7 Yes 3.1 1.048 4.8h
a=0 1.94 1.77 3.7 Yes 6.0 0.978 >17.20
16416 turbo-coded
Unfiltered FQPSK (8920)
Rate 1/2 0.98 0.66 2.3m Yes 0.5 0.64& 2.4k
Rate 3/4 1.47 0.99 3.6m Yes 0.5 0.96& 3.7k
Rate 7/8 1.72 1.16 4.9m Yes 0.5 1.128 5.0"
4D 8-PSK TCM with
SRRC a = 0.35 and
(255, 239)
Reed-Solomon (RS)™
2 bits/Hz 2.04 1.63 4.8° Yes 3.4 0.79 5.3
2.5 bits/Hz 2.55 2.04 6.4° Yes 3.4 0.98 7.4

Further details regarding the data presented in Table 1 include the following points referenced in the
table:
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The detection filter was matched to the SRRC pulse but with no equalizer to compensate
for the degraded performance resulting from nonlinear amplification.

In the ideal case, an OQPSK receiver that suffers no performance loss with respect to
BPSK is assumed. The same pulse shapes used with BPSK may be used with OQPSK,
doubling the spectral efficiency.

Single-filter detection with a quasi-optimal filter (either a Wiener filter or through a com-
puter search) [7].

Viterbi maximum-likelihood receiver with unquantized branch metrics.
Proprietary filter.

In the Viterbi algorithm, 3-bit metric quantization and 70-bit truncation path length were
used.

These numbers are obtained by scaling nonlinear amplifier throughput from uncoded re-
sults.

These numbers are estimated by applying coding gain in the linear channel to the nonlinear
channel.

Data from [2].

Data from D. Lee.?
Data from Simon et al.
Data from [5,6].

These numbers are obtained by applying coding gain for the particular rate turbo code to
the performance of uncoded FQPSK.

Data from [3].
Data from [4].

POWER SPECTRAL DENSITY
(NORMALIZED BY ITS PEAK), dB

-70 | | | |
0 2 4 6 8 10

ONE-SIDED BANDWIDTH/ ( SYMBOL RATE ENTERING
MODULATOR), Hz/symbols/s.

Fig. 9. Mask of modified SFCG Recom-
mendation 21-4, provisional.
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From the table we observe that, for uncoded schemes, SRRC-OQPSK with a = 0 is most spectrally ef-
ficient under ideal conditions; under nonlinear amplification, however, SRRC-OQPSK is severely distorted
and FQPSK is most spectrally efficient. In terms of power efficiency, BPSK or OQPSK with rectangular
pulses ranks highest, but they do not conform to the SFCG mask. GMSK with BT = 0.5 performs next
best (under nonlinear amplification). For coded schemes, we see that 4D 8-PSK TCM 2.5 bits/hertz
is theoretically most spectrally efficient, while rate 7/8 16+16 turbo-coded unfiltered FQPSK is most
spectrally efficient under nonlinear amplification. Rate 1/2 16416 turbo-coded OQPSK with any pulse
shape is theoretically most power efficient, while under nonlinear amplification, the same coded scheme
with rectangular pulse shape maintains that position. Taking SFCG conformity into account, the most
power-efficient scheme under nonlinear amplification is rate 1/2 16416 turbo-coded SRRC-OQPSK with
a=1.

The rate 1/2 LDPC code, shown in Figs. 5 and 6, with SRRC-OQPSK modulation with o = 1 has
the additional benefit of achieving lower BERs (10~?) with lower decoding complexity. At BER=10"9,
this code has essentially the same power and spectral efficiency of the more complex rate 1/2 16416
turbo-coded OQPSK.

VI. Effects of Amplifier Nonlinearity

In the comparison table of the prior section, the effect of power amplification upon the modulation
performance was evaluated through simulations of the amplitude and phase nonlinearities for a particular
amplifier at a particular point in the nonlinear region of operation (maximum output power). Alter-
natively, one could back off in input power and operate in the linear region, thereby not subjecting
nonconstant-envelope modulations to the spectrum and pulse distortions induced by amplifier nonlineari-
ties. By doing this, however, one pays a penalty in transmitted output power, which must be compensated
for elsewhere in the link budget. Furthermore, as the operating point in saturation often occurs in a region
of high amplifier efficiency, backing off from this point may also result in an additional power penalty due
to lower amplifier efficiency.

Following the methodology in [10], the average total power P; is given by
Py = Pgc+ Py, (6)

where P, is the average dc power supplied to the amplifier and P;,, is the average input RF signal power
of the amplifier. The power-added efficiency of the amplifier is defined as [11]

Pout (t) - Pin (t)

Pl =P

(7)

where P,,; is the output RF signal power. Therefore, the average total power may be written as [10]
E>) 53 ) ) 1 - Pap P C
Py = Pge+ Pin = Pous 1+Q
Pout

= Fout(l + ’Y) (8)

5D. Lee, “90% and 99% Power Containment Bandwidths for Various Modulations,” (internal document), Jet Propulsion
Laboratory, Pasadena, California, October 2001.

6 Simon et al., op cit.
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where

l_PaePc ﬁzn 1_Fae
7:(_#%(1__ )( _ ) (9)
Pout Pout Pae

Figure 10 shows plots of the amplifier output power and power-added efficiency as a function of amplifier
input power for an X-band 8-W SSPA provided by Centre National d’Etudes Spatiales (CNES). Phase
distortion is not considered here. We may now compute the additional power necessary for transmission
of a particular modulation by calculating 1 + ~ using Eq. (9). For constant-envelope modulations, the
operating point is the peak efficiency point, which is at approximately 19.5-dBm input power. For
example, for NRZ rectangular pulse BPSK, P;, = 19.5 dBm, P,,; = 38.8 dBm, and P, = 0.42. We
therefore obtain from Eq. (9) that v = 1.36 and that the loss associated with amplifier inefficiency is
3.7 dB. Since we can operate in saturation, there is no output back-off power loss.

For nonconstant-envelope modulations, we would like the entire range of power variation to lie within
the linear region of the input-to-output power curve. From Fig. 10, it appears that the linear region of
operation ends at about 15.5-dBm input power. If we place the peak power at this point, then we subtract
from 15.5 dBm the figure from the peak-to-average power ratio column in the modulation table in order
to determine the average input power. So for example, for SRRC BPSK « = 1, the peak-to-average power
ratio is 3.7 dB, so that P;, = 11.8 dBm, Poy; = 33.3 dBm, and P,. = 0.18. From these quantities, we
see that the output back-off power loss is 38.8 — 33.3 = 5.5 dB, and that v = 4.68, so that the amplifier
efficiency power loss is 7.5 dB.

In Table 2, we show the amplifier back-off and efficiency power losses for the modulations from Ta-
ble 1. Note that the losses for the coded modulations are the same as for their uncoded counterparts and,
therefore, are not repeated in the table. When comparing the output back-off power losses in Table 2 with
the nonlinear amplifier simulation losses in Table 1, one must conclude that significantly more penalty is
paid by backing off transmission power to the linear region than by subjecting the nonconstant-envelope
signals to nonlinear distortions. For example, for SRRC-BPSK with a = 0.5, nonlinear amplification
results in 0.6-dB more required power from the simulation results of Table 1, whereas Table 2 shows
that 5.4-dB power is lost by backing off to the linear region of operation, in addition to an efficiency loss.

4 r T T T T T T T T T T ]
£ 40 | —— OUTPUT POWER, dBm e T
Q
IS4 | — — POWER-ADDED EFFICIENCY, % ]
o 0 36 —
cQ L / i
S 32| 4 i
E(ZD L / i
BE 28 y ]
5 i i
G 24 ]
=t - / ]
O 20 y |
o

= i / -
:)D 16 / |
o - 7/ ]
ES 12f ’ i
2T L s i

ouw P
= B 7 ]
o) - _ - ]
o — P |
[ T | | | | | | | L
0 4 6 8 10 12 14 16 18 20 22

INPUT POWER, dBm

Fig. 10. SSPA input-to-output power and power-added
efficiency characteristics.
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Table 2. Power losses due to amplifier nonlinearities.

. Peak-to-average Output back-off Anmplifier efficiency
Modulation and code

power ratio, dB power loss, dB power loss, dB
Uncoded BPSK: NRZ rectangular 0.0 0.0 3.7
SRRC-BPSK a =1 3.7 5.5 7.5
a=0.5 3.4 5.4 7.3
a=0 8.2 9.8 11.6
OQPSK: NRZ rectangular 0.0 0.0 3.7
SRRC-OQPSK a =1 2.1 3.8 6.2
a=0.5 3.1 4.9 7.0
a=20 6.0 7.6 9.6
Pre-coded GMSK: BT = 0.5 0.0 0.0 3.7
BT =0.25 0.0 0.0 3.7
FQPSK: Unfiltered 0.02 1.8 4.8
B (filtered) 0.5 2.4 5.1
Coded T-OQPSK with RS+(7,1/2) c.c. 1.3 3.0 5.5
Constant envelope T-OQPSK with 0.0 0.0 3.7
rate 1/2, 4-state c.c.
4D 8-PSK TCM with SRRC o = 0.35
and (255,239) RS
2.0 bits/Hz 3.4 5.3 7.3
2.5 bits/Hz 3.4 5.3 7.3

On the other hand, Table 1 also shows that the spectral efficiency is reduced by more than one-half by
nonlinear amplifier operation.

VII. Conclusions

In this article, we defined a unified framework and specific metrics for comparison of different coded
modulation systems in terms of power and spectral efficiency. Spectral efficiency is measured in terms
of essential bandwidth, providing a much more informative method of comparison than just relying on
compliance or noncompliance with a prescribed spectral mask.

Several proposed coded modulation systems have been considered and evaluated, with the goal of
reducing the number of possible choices to a small subset, for a typical high-data-rate (10 to 100 Mb/s)
deep-space mission, such as a Mars orbiter. We also computed the ultimate capacity limits in the presence
of a spectral constraint to provide a valuable indication of the resulting capacity losses and of how close
to optimal are the proposed systems.

When also taking into account future desires for lower BERs (< 10~?) and low decoder implementation
complexity, in order to allow high decoding speeds, rate 0.5 or 0.8 LDPC codes with OQPSK modulation
and simple SRRC filtering provide a very appealing solution in the longer term for data rates exceeding
100 Mb/s. Punctured turbo codes and filtered OQPSK provide a useful solution for the near term, since
the current DSN decoder can be used with minor modifications, although the decoding speed will be
limited to a few Mb/s in this case. Iteratively decoded coded FQPSK is another interesting candidate
due to its high power and spectral efficiency. This is mitigated by the fact that a new decoder needs to
be designed and that very low BERs may be difficult to achieve.
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